
OS-9 GMX~ III Manual Addenda
Version 1.2, 09/14/83

This document describes features specific to OS-9 GMX~ III, Version
1.2 (the GIMIX version of OS-9 Level II, for the GMX~ 6809 CPU III
board), that are not documented in the standard OS-9 USERS and/or SYSTEM
PROGRAMMER'S manuals.

CONTENTS

Differences Between Version 1.1 and 1.2 •••.••••.•••••• 2

* RBF Change s •..••..•...•.............•..•..••....•..... 3

DEFS Fi les 0 • • • • • • • • • • • • • • • •• 3

* Inte rrupts ..........•............•..•......•..•... 0 • •• 3

* Memo ry Addressing ...•..................•.•..•...••..•. 4

DA T and Memory At tr ibutes •••.••....••.••••••••••••.•.• 4
Write Protect ..••.•.••.•..•.••.••..••.. 0 • • • • • • •• 4
Unallocated Memory ...............•.............• 5
Watchdog Counte r ••.......•...•..•...••.•••..•••• 5

At tribute Test Uti Ii ties •.•••.•.•..••••••••••••••••••• 6

* Dev ice Descr iptor Change s •••••.••••.•.••.••.•••••••••. 7

* X-ON/ X-OFF ........................................•... 7

* G68 (DMA floppy disk) Driver .•..••••.••••••••..•.••.•• 7

* G68 Dev ice Desc r i ptors .•.••........•....•.••... 0 • • • • •• 8

Hard Disk Drivers & Descriptors •.•••••••••••.•.••..••• 9

Hard Disk Cluste r Si zes .............•....•............ 9

Formatting Hard Disks ••.••••••...••.•..•••.••••••.••• 10

Booting from the Hard Disk •••••....••.••••••.••....•• 12

Building a customized boot file (OS9Boot) .••..•••••.• 12

New Erro r Code s ..••.....••...•.....•... ~ . • • . . . . . . • . .. 17

* Switch Configuration Drawings ......•.•.•.•.•. Appendix a

WPROT Command ••••..••.......••...........••••..•..•• b-1

INIZ and INIZP Commands .•........................... c-1

HDERR Command for OMTI hard disk controllers .......• d-1

* Denotes IMPORTANT variations from versions 0.0 and 0.5
or from the information in the standard OS-9 manuals.

© 19 8 3 GI t~ I X Inc. Rev J 11/30/84



***** Differences Between Versions 1.1 and 1.2 *****

Except for the changes listed in this section, OS-9 GMX III, V1.2
is fully compatible with Version 1.1.

KERNEL: Memory modules may now be loaded into memory space that is
not contiguous. This allows better utilization of available memory.

A "Suspend State" has been added to the possible process states.
This allows (but does NOT require) drivers to "Suspend" the current
process while awaiting an interrupt. In earlier versions, the process
was "put to sleep" and a signal sent to "awaken" it. The Suspend State
decreases the amount of overhead during interrupt processing. NOTE:
Older drivers, using the "sleep" method will still work properly with
Version 1.2; however, drivers using the "suspend" method will not work
with the older versions.

RBF: A byte-locking style of record locking is now used in place of
the sector-locking method used with Version 1.1. Several other minor
corrections and speed enhancements have also been made to RBF.

DEVICE DRIVERS: The device drivers (with the exception of G68
floppy disk driver) have been modified to take advantage of the "Suspend
State" described above. G68 does not use the "Suspend State" in order
to retain the "drive motor time-out" protection described in the G68
Driver section. G68 has been modified to eliminate the "Error 11210"
problem encountered on earlier versions.

UTILS: In addition to minor changes to some of the utilities, MDIR
and PROCS have been modified to work with non-contiguous memory modules.
The new versions of these programs MUST be used with Version .1.2. The
new versions will NOT work properly with the old Kernel.

PROGRAM DEBUGGING: When a UAM or WPT trap (error #199 or #198) is
caused by a program running under the OS-9 debugger, control will now
return to the debugger to facilitate location of the problem that caused
the trap. A WDC trap (error #197) will still cause the system to return
to "shell".

-

-

-
\01983 GH1IX Inc. 2 Rev J 11/30/84



***** RBF Changes *****

Due to changes in RBF affecting the bitmap and directory handling,
disks created under GMX~ III, V1.1 or V1.2 (or Level I, V1.2/Level II
V1.1/2) CANNOT be written on by the versions of RBF used in Versions
O.x of 05-9 Levels I or II. V1.2 disks can always be READ by these
older versions of RBF. V1.2 can read and write disks created by old
RBFs; however, once written on by V1.2 RBF, the disks should not be
written on by the old RBF. Note: This change affects all current
implementations of 05-9 Levels I and II and is not spec fie to the GMX~

III version.

059defs Files

The "OS9defs" files have been revised. They have been split into
several different files to allow selective inclusion in assembler
programs, depending on the intended application. A special file
(li.equates) may be included in existing programs, that use the old
short-form names, to equate the old names to the nBw, longer names used
in the new "059defs" files.

***** Interrupts *****

Since 05-9 is an interrupt driven system, all I/O devices
(including the time-of-day clock, disk controller(s), and
serial/parallel I/O boards for terminals and printers) must have their
IRQ interrupt outputs enabled.

Most devices do not actually generate an interrupt on the bus until
initialized by 05-9; and a system reset (or turning off the power)
clears any interrupt output that may be pending: once the device has
been initialized. However, the 6850 ACIAs (used on GIMIX 1-port, 2-port
and 8-port serial interfaces) have no direct connection to the system
reset line. They can only be reset by the software, or by turning the
power off. Because of this, it is possible to reset a running system
and leave unserviced interrupts (from the 6850s) on the bus. These
"leftover" interrupts can interfere with proper operation of the system
when it is rebooted after a reset. Since OS-9 does not automatically
initialize all of the serial ports when it is booted (normally only
"TERM" is initialized), any "left-over" interrupts must be cleared by
some other means. Turning the system off before booting will insure
that the interrupts are clear, but this is not always practical. Two
special utilities "INIZ" and "INIZP" can be used in the "startup file"
to clear any unserviced interrupts when the system is rebooted. See
appendix c for information on INIZ and INIZP.

© 198 3 GI 1-1 I X Inc. 3 Rev J 11/30/84



***** Memory Addressing *****

OS-9 Gt~xm III and the GMX m CPU III allow a full 64K of RAM to be
installed on each of the first 15 memory banks ($O-$E). The 16th bank
($F) can have up to 56K of RAM installed; the upper BK are reserved for
I/O and the operating system PROMs. RAM should be installed in
contiguous 64K banks beginning at address $0000 on bank $0. All I/O
devices including the motherboard and disk controllers must have
extended address decoding enabled and set to decode bank address $F (see
appendix a).

Since the GMX m CPU III automatically switches to the system state
when servicing interrupts, the interrupt vectors need not appear in each
of the 16 memory banks as in previous systems. This means that up to
64K of RAM may be allocated to a user or task with no system overhead;
the ENTIRE 64K is available to the user/task.

Dynamic Address Translation and Memory Attributes

The GMX m CPU III includes an expanded Dynamic Address Translator
(DAT) which, in addition to providing translation in 2K segments for
more efficient memory usage, allows the assignment of "memory
attributes" on a block by block (2K block) basis. These memory
attributes are: Write Protect, Single Step, and Unallocated Memory.
They may be selected separately or in combinations for each individual
2K memory segment in the address space. The purpose of these attributes
is to provide protection for the system and to provide enhanced
debugging capabilities. Currently only the Write Protect and
Unallocated Memory attributes are implemented in OS-9 GMX m III.

Write Protect Attribute

The WPT attribute is used to protect areas of memory, such as those
containing sharable OS-9 modules or user programs, from unauthorized
and/or unintentional modification. This greatly increases the security
of the system by preventing, for example, one user from corrupting the
copy of BASIC09 that is being shared by with users. OS-9 determines the
intended status of a program (protected or unprotected) by testing a bit
in the module header when the module is loaded into RAM. Once loaded, a
protected module cannot be written to or modified, except by replacing
it with another module.

--

Normally, programs supplied by GIMIX and other software vendors are
write-protected. Since the system prevents even intentional
modifications, the Debugger can not be used to change or patch
write-protected modules. Source code for most device descriptors and
for certain other modules is provided on the system disk. The source
can be edited and reassembled to modify these modules. Also included on
the system disk is the utility program "WPROT" (see appendix b) that
changes the write-protect status of a module. WPROT can be use to
temporarily write-enable a module so it can be modified with the
Debugger. --

To facilitate modification and debugging, modules can be run

© 19B3 GItH X Inc. 4 Rev J 11/30/84



without write protection. However, to maintain maximum system security,
they should be write-protected after modification and testing are
completed. Note: To protect the system from crashes (especially
important if there are other users on the system) and help detect
certain types of bugs, initial testing should be done with write
protection enabled.

The write protect status of a module is determined by bit 6
(previously undefined) in the module header's attributes/revision byte
at module offset 7. (Bit 7 of this byte is the reentrant/sharable bit,
see the System Programmer's Manual.) If this bit is cleared (0) the
module will be write-protected when loaded by 05-9, if set (1) the
module will be write-enabled.

If the GMX~ CPU III detects an attempt to write to write-protected
location in memory, a trap occurs and, as a result of the trap, 05-9
will terminate the offending task (the task that initiated the write
operation) and issue an error message (Error #198).

Unallocated Memory Attribute

The UAM attribute is used to prevent a user/task from making memory
accesse~ (read or write) outside the memory area assigned to it by the
operating system. Like the WP attribute, this increases the security of
the system by preventing unauthorized access to selected areas of
memory. The UAM attribute is automatically controlled by 05-9. When a
task is initiated, all memory requested for the task is "allocated" to
that task, all memory outside the requested area is "unallocated" and
therefore inaccessible to that task.

If the GMX~ CPU III detects an attempt to access (read or write)
unallocated memory, a trap occurs and, as a result of the trap, 05-9
will close down the offending task (the task that initiated the access)
and issue an error message (Error #199).

Watchdog Counter

An additional function on the GMX~ CPU III board, the Watchdog
Counter, is also implemented in 05-9 GMX~ III. The woe is controlled by
the operating system and, when enabled, limits the length of time that
interrupts may remain masked and therefore unserviced. The WOC is
enabled by 05-9 when the system is switched. from the system state
(operating system) to the user state (user program running). It begins
counting CPU clock cycles when an interrupt occurs and, if the interrupt
is not serviced by the CPU in a specified number of cycles (hardware
selected: 128 standard,32 optional) a trap occurs. When a WOC trap
occurs, 05-9 will close down the offending task and issue an error
message (Error #197).

The woe trap provides two types of protection. It protects against
a user program that masks IRQ interrupts; necessary to the system for
task switching and I/O processing. It also protects against the
execution of certain illegal opcodes which can lock the 6809 in a state
in which it will not execute further instructions or respond to any
interrupts. To recover from this processor state, the woe generates a

© 19 8 3 GHlI X Inc. 5 Rev J 11/30/84



special reset (only the 6809 is reset). The reset is processed through
a special trap-vector instead of the normal reset vector, allowing OS-9
to resume processing of all but the task which caused the trap.

Test Utilities

Three utility programs are provided with the OS-9 GMX~ III system
to demonstrate and test the function of the WPT, UAM, and WDC traps.
The utilities (test199uam, test198wpt, and test197wdc) are provided in
both source and object form to help the user understand the function of
the traps. Execution of one of the utilities will cause OS-9 to close
down the task and issue the appropriate error message.

TEST199UAM

Test199uam tests the function of the Unallocated Memory trap by
reading from a memory location beyond the end of its normally allocated
data area. Note: if test199uam is run with a memory-size modifier in
the command line (i.e. test199uam #6K) a trap will not occur and the
program will loop until "KILL"ed.

TEST198WPT

Test198wpt tests the function of the Write Protect trap by writing
to itself. Since bit 6 of the program's attributes field is clear (0),
the module is write-protected and a trap will occur.

TEST197WDC

Test197wdc tests the function of the Watchdog Counter by setting
the IRQ mask and entering a wait loop. Once the watchdog count expires
(normally 128 CPU cycles) the trap will occur. Note: in order for this
test to function, an IRQ must occur after the program is executed; to
start the watchdog count. If the system clock has been started (by
running "setime") the clock interrupts will cause the trap to occur. If
the system clock is not generating interrupts, an interrupt can be
caused by hitting a key on the terminal.

In addition to providing a considerable degree of protection for
the system, the attributes and watchdog traps also assist in software
debugging. In many cases they will detect common problems (caused by
uninitialized pointers, incorrect addressing modes, etc.) that might
otherwise go unnoticed or be difficult to identify.

-

-
© 1 9 8 3 GItH X Inc. 6 Rev J 11/30/84



Device Descriptors

The device descriptors provided with 05-9 GMX~ III follow the
conventions established in earlier versions of 05-9 from GIMIX. The
header on the catalog printout, included with the system disk, lists the
configuration of the disk, terminal, and printer descriptors provided.
5ince the descriptors are write-protected by the GMX~ III system when
they are in memory, the only way to modify them for user-specific
requirements is to modify the source code and reassemble them. The Gt1X~

III system does not permit "hot patching" with debug as in previous
versions. The source code to all of the standard device descriptors is
provided in the "SOURCE" directory on the system disk(s).

***** Device Descriptor Changes *****

Due to changes in the Device Descriptors (Device Controller Address
field), device descriptors from earlier versions of OS-9 (Level II VD.5
or earlier and OS-9 level I prior to version 1.2) CAN NOT BE USED,
without modification, with OS-9 GMX~III. In order to use existing
descriptors, the extended address byte (at module offset $E) must be set
to $OF. Without this modification, the system will appear to function,
but performance will be seriously degraded!

***** X-ON/X-OFF *****

In addition to the address change noted above, the descriptors for
ACIA devices (TERM, T1, T2, ••• ,and P1) have additional bytes added
to control the X-ON/X-OFF functions (module offset $2A = X-ON, offset
$2B = X-OFF). These bytes can be set to the desired ASCII codes for
these functions if they are required. Setting these bytes to $00
disables X-ON/X-OFF (terminal descriptors shipped with GMX~ III have
these bytes set to $00). X-ON/X-OFF can also be enabled using TMODE.
When X-ON is set to $11 (control-Q), the QUIT character, normally
control-Q, (module offset $23) must be set to some other control
character. The recommended substitute character is $05 (control-E).
Note: When terminals that generate X-ON/X-OFF sequences are used,
X-ON/X-OFF mus~ be enabled in the system.

G68 DMA Disk Controller Drivers

OS-9 GMX~ III uses an enhanced version of the G68 device driver.
This G68 supports 3 ms. stepping rates for 5.25" disk drives, allowing
faster access times with drives that are capable of stepping at this
rate. (All 5.25", 80 track (96TPI) drives currently supplied by GIMIX
are capable of stepping at 3 ms.) This option is controlled by a
separate bit in the floppy disk device descriptors as described below.

(0 19 8 3 GH1 I X Inc. 7 Rev J 11/30/84



The new G68 prevents the drive motors from timing-out if a drive
with no disk (and no "Drive Ready" line) is accessed. On earlier
versions of G68, if the drive motors timed-out the system would hang and
usually require re-booting. This feature will only function if the
s ys t em i nt err upt c 1 0 c k has bee n s tar ted b y usin g the " SET I1~ E" com man d •
We recommend that "SETIME" be included in the "STARTUP" file ("setime -
00"· will start the clock running, without prompting for new values).
Note: To prevent the system from hanging if a non-existant drive is
accidentally accessedi a system disk should be created that does not
have device descriptors for the non-existant drive(s).

G68 Device Descriptors (DO,D1, etc.)

The device descriptors for the G68 driver follow the definitions
given in the OS-9 manuals with the following exception.

MODULE
OFFSET

$14

NAME

IT.STP

DESCRIPTION

Bits 0 (lSB) and 1 determine
the basic stepping rate as
shown in the 179x table in
the manual. Bit 7 (MSB)
controls "fast stepping"
for 5.25" floppy drives -

The fast stepping bit (Bit 7) when set (1) in a descriptor for
5.25" drives causes the stepping rate (determined by bits 0 and 1) to be
doubled. The 5.25" drive will be stepped at the rate shown in the 179X,
8" drive column in the table. When Bit 7 is clear (0), .the drives will
be stepped at the normal 5" rate shown in the 179X, 5" column. The ·fast
stepping bit has no effect on 8" drives and should be clear (0) in 8"
descriptors.

Caution: Be sure the drives are capable of stepping at the selected
stepping rate. In general the only 5.25" drives capable of stepping at
3 ms. (IT.STP = $83) are the newer 80 track (96TPI) drives. Various
combinations of the step rate and fast stepping bits can be used to
match the stepping rate to the drive(s) used. See the disk drive
manufacturer's literature to determine the stepping capabilities of the
drive(s). Attempting to step a drive faster than its specified maximum
rate will cause excessive disk errors and/or prevent the drive from
working at all.

-
01983 GIMIX Inc. 8 Rev J 11/30/84



Hard Disk Drivers and Descriptors

Like floppy disk drivers, the hard disk drivers consist of two
parts: a device driver that interfaces the hardware to the Random Block
File manager (RBF) and the device descriptor(s) that describe the
characteristics of the hard disk drives. Hard disk systems may be
supplied with either one of two brands of hard disk controller.
Depending on the controller used, the device driver will be called
either "XBC" (for XEBEC controllers), or "OMTI" (for controllers
manufactured by OMTI). The drivers are customized to the particular
controller and are NOT interchangable. The device descriptors for the
hard disks are named "HO", for the first drive, and "H1" for the second.
While the descriptors for both controllers have the same names, they are
also NOT interchangable. The driver and descriptors are factory
configured for a specific controller and drive(s) and are not normally
modified by the user. The configuration printout supplied with the
master system disk lists controller and drives that the disk is
configured for.

NOTE: Version 1.2 of 05-9
driver/descriptor format than V1.1.
should not be mixed with those of V1.2.

GMX~III uses a
Drivers/Descriptors

different
from V1.1

Hard Disk Cluster 5izes

05-9 keeps track of disk space allocation with a "bit-map" which is
kept· qn each disk. The bit-map occupies one or more sectors, depending
on the total capacity of the disk and its cluster size. Each bit in the
bit-map represents a group of 256-byte sectors on the disk, called a
cluster. A cluster may represent a single physical sector (cluster size
1), or a group sectors (cluster size n). The number of sectors in a
cluster is determined when the disk is formatted, and is always an
integral power of 2 (1, 2, 4, 8, ••. ).

The minimum number of sectors that 05-9 can allocate to a file is
one (1) cluster. Normally, to maximize disk usage, a cluster size of 1
is used. However, due to internal requirements of 05-9, this limits the
maximum size of an individual file to approximately 24 Megabytes. This
limitation does not affect floppy disks or the low capacity hard disks,
with total capacities less than 24 Mbytes. However, with larger
capacity hard disks, it may be desirable to ha~e individual files larger
than 24 Mbytes. In order to permit files larger than 24 Mbytes, the
disk must be formatted with a cluster size greater than 1.

The "Format" utility included with 05-9 GMX III prior to Dec. 1,
1984 uses a default value of one (1) sector per cluster for both floppy
and hard disks. Copies of "Format" shipped after 12/01/84 use a default
of one (1) for floppy disks, and eight (8) for hard disks. Both
versions of "Format" allow the user to select a different cluster size
by specifying the desired size on the command line when format is
invoked. (This option is not documented in the current 05-9 manuals;
however, it is documented in the program itself, and can be seen by
invoking format without a drive specification.)

o 1 9 8 3 G I t·l I X Inc. 9 Rev J 11/30/84



The cluster size is specified as a decimal number, which must be an
integral power of 2 (1, 2, 4, 8, ••• ), delimited by slashes (e.g. /8/).
If an improper value is used, format will revert to the default value.

For example, the command:

format /hO /8/

would format the device lI/hO" with 8 sectors per cluster.

The IIfree ll utility can be use to determine the number of sectors
per cluster on a previously formatted disk.

NOTE: Once a disk has been formatted, the cluster size can only be
changed by completely reformatting the disk. If files larger than 24
Megabytes are anticipated, the disk MUST be formatted for a cluster size
greater than 1 before the disk is used. If it is necessary to change
the cluster size of a disk containing files, the data must be copied to
another disk(s) and the original disk must be reformatted.

There are several factors to consider when determining the
appropriate cluster size for a particular application. A cluster size
of one (1) generally makes the most efficient use of available disk
space (at most only a fraction of one sector is wasted per file), but
limits the maximum file size to approximately 24 Megabytes, and tends to
increase fragmentation of the disk. (Fragmentation is when individual
files are stored in groups of non-contiguous sectors (clusters)
scattered on the disk, rather than a single contiguous group.)
Fragmentation increases the disk access time by increasing the number of
disk seeks required to access the entire file. Larger cluster sizes
increase the maximum file size, and tend to decrease fragmentation;
however, large cluster sizes increase wasted disk space by as much as
(clustersize - 1) sectors per file.

Formatting Hard Disks

The same "FORMATII program is used to format both floppy and hard
disks. Format determines the type of disk being formatted from the
device descriptor. There are several differences in the options
available when formatting hard disks, as described below. Hard disks
are normally formatted only once; when the drive is first used. Once
the hard disk is formatted· it does not require reformatting unless the
file structure is damaged by a hardware or software fault, or if it
becomes desirable to erase ALL of the files on the disk at once.

CAUTION! !

-

A physical format (see below) destroys all
on the disk. A logical format, while it does
previously recorded data, makes the data
impossible to recover!

data recorded previously
not completely destroy
very difficult if not

Systems are normally shipped with the hard disk(s) already
formatted, as part of the testing performed on the system. The hard --
disk may contain copies of the files provided on the system (floppy)
disk, and in some cases, additional "special" files, not included on the

© 1 9 8 3 GI t~ I X Inc. 10 Rev J 11/30/84



floppy disks. Before formatting the hard disk(s) use the directory
(DIR) command to check the contents of the hard disk(s), and copy any
"special" files from the hard disk to a floppy to preserve them. If the
disk(s) are already formatted they can be used as-is or reformatted as
desired. Using the logical-only format option (see below) will save
time and accomplish the same results as a complete physical and logical
reformatting. Note: the logical-only format option can be used to
reformat disks that were previously formatted for a different operating
system (such as FLEX). If the hard disk(s) do not appear to be
formatted (as evidenced by read or seek errors when attempting to
perform the "dir") they should be formated using both the physical and
logical format as described below.

When FORMAT is called with a hard disk (/HO or /H1) as the device
to be formatted, it first prints a list of the parameters that will be
used to format the hard disk. Unlike the floppy disk format, these
parameters are fixed by the requirements of the drives and cannot be
changed from the FORMAT utility. Entering either "N" (NO) or "Q" (QUIT)
a t t his tim e will abo r t the for mat pro gram • If" Y" i sen t ere d , FOR 11 AT
will ask

Both Physical and Logical Format ?

Answering "Y" (YES) will cause FORMAT to perform both types of format.
If "N" (NO) is entered only the logical format will be performed.

PHYSICAL FORMAT

The physical format is normally only required when formatting a new
hard disk that has not been formatted previously. The physical format
records the information required by the controller to divide the disk
into. sectors and to locate a particular track and sector on the disk.
The operating system does not modify this information once it is
written.

LOGICAL FORMAT

The logical format records the information that 05-9 requires to
store and keep track of the data files that will be written to and read
from the disk. Some of this information is modified by the operating
system as files are written to and deleted from the disk. performing a
logical format has the same effect as deleting ALL files on the disk.
The logical format takes considerably less time than the physical
format.

After the type of format desired is entered, FORMAT will prompt for
a disk name, which must be entered following the same syntax as the name
for a floppy disk. The next prompt is:

Physical Verify Desired?

Answering "Y" will cause a physical verify to be performed. Each
sector is read and the information written there is verified. As the
verify is performed, FORMAT prints the number of each completed track on
the standard output device. Note: Before performing a physical verify,
use TMODE to turn the pause function off or FORMAT will stop at the end
of each page of track numbers. Answering "N" causes the physical verify
to be skipped.

(01983 GH1IX Inc. 11 Rev J 11/30/84



Booting From The Hard Disk

It is possible to boot OS-9 GMX III from a hard disk in one of two
ways, depending the type of OS-9 used. The Support ROM version of OS-9
( Gt~ X I I Is) can be boo ted dire c t 1 y fro m the ha r d dis k, 0 nc e an" 0 S9Boo t "
file and the other necessary files have been installed on the hard disk.
(See the Support ROM documentation for more information.) The original
OS-9 GMX III (without Suppport ROM) requires that OS9Boot reside on a
floppy disk. However, OS9Boot can automatically transfer to the hard
disk once it has loaded from the floppy. (This method can also be used
with the Support ROM version.) The initial directories will be /HO and
/HO/CMDS, the system will attempt to execute the "STARTUP" file from
/HO, and "Login" will expect to find the "PASSWORD" and "MOTD" files in
the directory /HO/SYS.

In either case, a special OS9Boot file is required. OS9Boot must
include the hard disk version of the system initialization module "init"
in place of the normal "init". A copy of this module is included on the
OS-9 system disk in a file called "Init.hd".

Building a customized boot file (OS9Boot)

Before attempting to create a new boot file, use one of the
procedures outlined in the OS-9 manuals to create backups of the
original system disk and store the original in a safe place. If the
system only has one floppy disk drive, backups can be made by using the
single drive option of either the "backup" or "copy" comma,nds, or by
first copying the entire floppy disk to the hard disk and then copying
from the hard disk to another floppy. Copies made using the "copy"
c·ommand can not be used to boot the system unless the "OS9gen" utility
is first used to install a boot file on the disk. Copies made using
"backup" can be used to boot the system, without the need for using
"OS9gen". Note: In order to use "backup", the disk being created must
have the same format as the original disk (number of tracks, density,
sides, etc.). The format of the supplied system disk is listed on the
printout provided with the disk.

When OS-9 is bootstrapped from disk (floppy or hard), it loads a
file called OS9Boot into memory from the boot disk. OS9Boot is created
by the "OS9Gen" command, and contains all of the modules normally
required to run OS-9. Depending on the system, this file includes all
or part of the OS-9 kernel, as well as the file managers, device
drivers, and device descriptors. The boot file (OS9Boot) supplied on
the original system disk contains everything necessary to run the system
in a minimum configuration (see the printout included with the disk).
However, it is often necessary for the user to create a customized boot
file to suit a particular application. A new boot file is required to
take advantage of certain features, such as the ability to boot from a
hard disk, or to enable the use of a hardware CRC board. A customized
boot file allows the user to install device descriptors for additional
devices (terminals, printers, etc.) and possibly remove some unnecessary

-

-

© 19 8 3 GI t~ I X Inc. 12 Rev J 11/30/84



modules in order to conserve memory. For example, if parallel I/O is
not required, the parallel driver "PIA" and parallel descriptor "P" can
be omitted. If the system will use only intelligent I/O boards, with no
standard ACIA or PIA devices, the drivers and descriptors for these
devices, as well as the Sequential Character File manager (SCF) can be
omitted from the boot file. The intelligent I/O devices have their own
file manager (IOPman) and do not need SCF. Device descriptors for
non-existant disk drives should also be omitted.

In order to facilitate the creation of customized boot files,
several special files are included on the supplied system disk. Other
necessary files are obtained by using the OS-9 "Save" command to create
copies of them from memory. The source code for various device
descriptor types is also included on the system disk. These source
files can be edited and assembled by the user to generate additional
device descriptors or to make modifications to the standard descriptors.

Note: The system module "SysGo", on the supplied system disk, has
its attributes set to non-reentrant. Since it is non-reentrant, SysGo
can not be copied from memory by using "save". If a separate copy of
SysGo is needed, it must be assembled from the source code included on
the system disk.

Included on the system disk are the files "Init.hd", OS9Boot.core,
and, with Support ROM versions only, "OS9p1.hcrc 6" and "OS9p1.hcrc 7".
Init.hd is a version of the "Init" module configured for booting from a
hard disk (see the preceding section). OS9Boot.core includes most of
the modules normally included in OS9Boot, with the exception of the
device descriptors (the "Pipe" descriptor is included), the hard disk
driver (XBC or OMTI), and the initialization module "Init". (Use the
Ident command, -s option, to list the modules included in OS9Boot.core.)
OS9pt.hcrc 6/7 are special versions of the kernel module "OS9p1",
required when a GIMIX CRC GENERATOR BOARD is installed.

The minimum requirements for a usable boot file are listed below.
Additional modules, such as device descriptors can be added as
necessary; however, the listed modules must be included or the system
will not boot.

Note: In systems using the OS-9 GMX III Support ROM, OS9p1 must be
included in the boot file, in systems without the Support ROM, OS9p1 is
in ROM and should not be included in the boot file.

***** Important *****

In OS-9 GMX III systems, as with any OS-9 Level II system, the
"shell" should NOT be incorporated in the bootfile, as is normally the
case with OS-9 Level I.

<0 1 9 8 3 GItH X Inc. 13 Rev J 11/30/84



Minimum boot file requirements

Support ROM systems

OS 9p 1 t
o59Boot. core §
INIT[.hd]
DO
TERM
<XBC or OMT!> "*
HO "*

Standard systems

059Boot.core §
INIT[.hd]
DO
TERM
<XBC or O~1TI> "*
HO "*

t This can be the standard 059p1 "saved" from memory or
one of the hardware CRC board versions. 059p1 must be
the first module in the boot file.

§ 059Boot.core may be replaced by the equivalent individual
modules.

"* Hard disk systems only, driver and descriptor must match
the controller used.

The following examples outline the procedure for a system that
includes one floppy disk (DO), one hard disk (HO), two terminals (TERM
and T1), and a parallel printer (P). Where the hard disk driver is
specified use either XBC or OMTI as appropriate to the system. The
files 059Boot.core and Init.hd are assumed to exist in the current
working directory.

Note: If the destination for the 059Boot file is not a freshly
formatted disk, and already contains files, 059Gen may fail because of
disk fragmentation and the requirement that the 059Boot file reside on
contiguous sectors. An 059Boot can usually be created on a disk (floppy
or hard) that already contains files; however, it may be necessary to
"use up" existing small groups of non-contiguous sectors by creating
dummy files, until a large enough block of contiguous sectors is
available. If 059gen aborts because of insufficient contiguous sectors,
a file called tempboot will be left on the disk. This temporary file
can be renamed before using 059gen again, causing 059gen to use a
different location on the disk the next time it is called. This process
may need to be repeated several times, renaming "tempboot" to a
different name each time, before a successful 059gen is run. Once
059gen is successful, the renamed tempboot file(s) can be deleted to
restore the disk space. Note: 059gen will automatically delete an
existing 059Boot file on the destination disk; however, it will not
delete the "tempboot" file if one exists. The tempboot file must be
renamed (or deleted) before 059gen can be run again, or a "File Already
Exists" error (11218) will be generated.

(01983 GHlIX Inc. 14 Rev J 11/30/84



EXAMPLE #1: system without Support ROM

OS9:save DO Create a file containing the descriptor "DO"

OS9:save HO Create a file containing the descriptor "H 0"

OS9:save Term Create a file containing the descriptor IITERMII

OS9:save <XBC or OtHI> Create a file containing the appropriate
disk driver.

OS9:save T1

OS9:save P

OS9:build boot list

? OS9Boot.core
? Init.hd
? Term
? <XBC or OMTI>
? HO
? DO
? T1
? P
? [return]

Create a file containing the descriptor "T1"

Create a file containing the descriptor IIplI

Create a text file containing a list of the
files to be included in the new OS9Boot file.

Additional descriptors or modules can be
included in the list as necessary.

OS9:0S9gen /00 <bootlist

OS9:

create an OS9Boot on the floppy

EXAMPLE #2: system with Support ROM

OS9:save OS9p1

OS9:save DO

OS9:save HO

OS9:save Term

Create a file containing the kernel 1I0S9p1"
(omit this step and use one of the ha.rd­
ware CRC versions (OS9p1.hcrc x) if the
system includes a CRC generator board.)

Create a file containing the descriptor 1100"

Create a file containing the descriptor "HOIl

Create a file containing the descriptor IITERM"

OS9:save <XBC or OMTI> Create a file containing the appropriate
disk driver.

OS9:save T1

OS9:save P

Create a file containing the descriptor IIT1"

Create a file containing the descriptor "P"

o 19 8 3 GHll X Inc. 15 Rev J 11/30/84



OS9:build boot list

? OS9p1[.hcrc x]
? OS9Boot.core
? IniLhd
? Term
? <XBC or OMTI>
? HO
? DO
? T1
? P
? [return]

Create a text file containing a list of the
files to be included in the new OS9Boot file.

Must be the first module in the list

Additional descriptors or modules can be
included in the list as necessary.

OS9:0S9gen /HO <bootlist

-or-

OS9:0S9gen /00 <bootlist

OS9:

create an OS9Boot on the hard disk

create an OS9Boot on the floppy

In systems that have intelligent serial I/O boards, the device
descriptors for terminals other than "Term" are normally called IT1,
IT2, etc.

Customized boot files that boot to the floppy disk, rather than the
hard disk, can be created by "SAVE"ing a copy of the sta.ndard Init
module from memory and using it in place of Init.hd in the above
examples.

The disk created by this procedure can now be used to boot the
system. The root directory of the hard disk (HO) must contain a CMOS
directory, which becomes the execution directory, and the "STARTUP" file
if one is to be used. The system will also search "HO" for the "SYS"
directory containing the "PASSWORD" and "MOTD" files.

Note: Much of the available software for OS-9, especially
assemblers, compilers, etc., expect to find common files such as "DEFS"
or "SYS" files in a particular directory on the system boot device.
Some programs of this type assume that the system boot device is always
"/00", and will still look for the files on "/00", even if the system is
booted from a hard disk. Programs that check the "Init" module to
determine the name of the system boot device, rather than assume it is
11/00", will locate these files on the hard disk when it is used as the
boot device.

-'

01983 GIMIX Inc. 16 Rev J 11/30/84



05-9 ERROR CODES

The following error codes should be added to the error code list in
the 05-9 manuals. They are generated by hardware "traps" on the
GMX III 6809 CPU board.

HEX DEC

$C5

$C6

$C7

197

198

199

WATCHDOG COUNTER TRAP - The CPU was unable to respond
to an interrupt before the Watchdog count expired. The
interrupts were masked for too long in a user task or
the CPU executed an illegal instruction and was unable
to respond.

WRITE PROTECT TRAP - An attempt has been made to write
to a module in memory that has the write-protect bit in
its header cleared (0), enabling write-protection.

(See page 5 for more information.)

UNALLOCATED MEMORY TRAP - An attempt was made to access
(read or write) memory not allocated to the program.

01983 GIMIX Inc. 1 7 Rev J 11/30/84



We would appreciate information from users on any other problems
encountered while using this version of 05-9 GMX~ III. To be most
useful, the information should be submitted in writing, and should
include a complete description of the problem and the conditions under
which it occurs, including the Edition number(s) of any programs
involved (use the IDENT command). A brief description of the hardware
configuration should also be included so that we can attempt to
duplicate the problem if necessary. Information regarding problems with
the software should be addressed to:

GIMIX Inc.
1337 W 37th Place
Chicago Il 60609

Attn: Mike Magnus

-

-

01983 GIMIX Inc. 1 8 Rev J 11/30/84



SWITCON1

SWITCH CONFIGURATION DRAWINGS FOR OS-9 GMX II & III

05/10/83

The following drawings show the standard DIP-switch configurations
for the GIMIX 64K RAM board(s), #68 DMA Disk Controller, Hard Disk
Interface (SASI), and Mother Board; when used with OS-9 GMX II & III.

The disk controller(s) must be set to both drive and decode
extended addressing (both "ENA" switches ON). The motherboard must be
set to decode extended addressing. The boards are addressed so they
appear only on bank $F (A16, 17, 18, 19 = ON), at the appropriate base
address.

The memory boards are addressed for either 64K banks (05-9 GMX III
systems or OS-9 GMX II systems with modified #05 CPU boards) or 56K
banks (unmodified 05-9 GMX II systems). The configuration of switch 53
will normally be the same on all boards in the system, with section-7 ON
for 64K banks or OFF for 56K. Both extended address enable switches
("XON"-sections 1 and 6) must be "ON" on all boards. The remaining
eight sections of 52 determine the bank address of the board. The
boards are divided into two halves, with sections 2,3,4, and 5 used to
set the bank address for one half and sections 7,8,9, and 10 the other.
In this application both halves are set to the same bank address. The
switches are set in a binary pattern with section-2(7) being the least
significant bit and section-5(10) the most significant. 5ee the drawing
for examples. The boards should be addressed on consecutive banks with
the first board on bank $0, the second on bank $1, etc.

***** CAUTION *****

In addition to the boards shown in the drawings, any other
memory-mapped boards installed on the 50 pin bus (GIMIX 8-port Serial
Interfaces, Intelligent Parallel Interfaces, PROM/ROM boards, etc.) must
be capable of extended addressing. Normally, I/O-type boards must be
addressed on bank $F, with a base address in the $EOOO-$EFFF range.
Memory-type boards (PROM/ROM) can be addressed as appropriate to the
application,· as long as extended addressing is enabled. Note: Standard
versions of 05-9 only search the lower 56K of bank $F for PROM/ROM
memory modules. In order to be located by OS-9, boards containing 05-9
modules in PROM/ROM must be addressed on bank $F.

***** NOTE *****

The switch configuration shown for the #68 DMA board
the system will be booted from a 5.25" drive (DO).
drive, 52 section-9 must be OFF.

assumes that
If DO is an 8"

01983 GIMIX Inc. -1- Rev. A



bLf- K. f\Ar'{1 bUAKU

SWITCH CONFIGURATION

FOR OS-9 GMX II 80S-9 GMX III

BANK ADDRESS (S 2)

$¢0¢0-$DFFF ($FFFF)

l ON=64K OFF=56K

USE 64K FOR ALL BOARDS

(EXCEPT BANK $F)

IN GMX m AND MODIFIED

GMX JI SYSTEMS.

USE 56K FOR UNMODIFIED

GMX]I SYSTEMS.

S3

I 2 3 4 5 6 7 8 9 ,{O

o 0 0 000 000
N N N N N F • N N N

F

$2 $3$0 $1
ON ,/ I " ON"' "

OFF ON OFF ON ON

OFF OFF ON ON ON

OFF OFF OFF OFF ON

OFF OFF OFF OFF ON

ON ,/ 1 " ON..... "
OFF ON OFF ON I ON

OFF OFF ON ON ON

OFF OFF OFF OFF ON

OFF OFF OFF OFF \ ON

I XON

2 AI6

3 AI7

4 AlB

5 AI9

6 XON

7 AI6

8 AI7

9 AlB

I~ AI9

BOARDS SHOULD BE ADDRESSED ON

SUCCESSIVE BANKS - (1ST BOARD, BANK ~i

2ND BOARD, BANK Ii 3RD BOARD, BANK 2 i ETC.)

DMA FLOPPY DISK CONTROLLER
08-9 GMX II a GMX TII CONFIGURATION

ADDRESS= $FE3B¢ BOOT DRIVE (0)= 5 til
EXTENDED REGISTER BASE

<' ADDRESS ADDRESS

I II
A
1

5
11

E A A A A A A A A A A A A A A A A E
N I I I I 3 4 5 6 7 8 9 I I I I I I N
A 6 7 8 9 SI S2 0 I 2 3 4 5 A

0 0 0 o 0 0 0 0 0 0 ON= I 0 0 0 o 0 o 0 0 0 0
N N N N N F N N F N N N F F F N N N N N

F F OFF= 0 F F F

I 2 ~ 4 5 6 7 8 9 10 I 2 3 4 5 6 7 8 9 10 -
LEXT. ADDRESS DECODE

5 ~ "OR a" BOOT SELECT:.J
DMA EXT. ADDRESS



0000000000
F N N NNN N N N N
F

I 2 :;. 4 5 6 7 8 9 10

DMA EXT, ADDRESS I I
EX~ ADDRESS DECODE

A A A
I I I

S2 2:; 4

HARD DISK INTERFACE

SWITCH CONFIGURATION
OS-9 GMX]I a GMX JlI
FOR XEBEC CONTROLLERS

ADDRESS=$FE388
REGISTER BASE

ADDRESS
EXTENDED
ADDRESS

~---------lJ )
AA AAA EE
I I I I INN
56789 AA

I
A A A A A A A A A R
:; 4 5 6 7 8 9 I I 5

0 I T 51

0 0 0 o 0 0 0 o 0 0 ON= I
N N N F N N N F F F

F F F F OFF=0

I 2 :; 4 5 6 7 8 9 10

RESET DISABLE~
FOR OMTI CONTROLLERS

ADDRESS=$FE3C0

REGISTER BASE EXTENDED
ADDRESS ADDRESS

I-A-A-A-A-A-A-A-A-A-R------A-A-A-AIIA A A Al E E

345678911S 111I1111 NN
01 T 23456789 AA

r-----------~SI S2r-- --.

o 0 0 000 000 0
F F F N N N N F F F
F F F F F F

ON=I

OFF=0

0000000000
FNNN NNNN NN
F

I 2 3 4 5 6 7 8 9 10

RESET DISABLE~
I 2 3 4 5 6 7 8 9 10

DMA EX~ ADDRESS I I
EX~ ADDRESS DECODE



MOTHER BOARD SWITCH CONFIGURATION

OS-9 GMX II a GMX 1II
ADDRESS =$FE000 -

OFF(OPEN)
S2

ON (CLOSED) OFF(OPEN)
SI

ON (CLOSED)
2) I () I

10FF I 4 [QITJ DIS 1- 0 ENABLE/DISABLE

IOFF I
1-0 SLOT I OFF I AI28

[QB] 16 ~ AI3 HIGH ORDER STARTING

[QITJ A5 [QB] AI4 ADDRESS BITS

C6ffJ A6 [Q]] AI5

10FF I A7 LOW ORDER I ON I EXON EXTENDED ADDRESS

I OFF l [Q]]
ENABLE/DISABLE

A8 STARTING AI6

I OFF I A9 ADDRESS BITS [QE[] AI7 EXTENDED ADDRESS

I OFF I AIO [Q[] AI8

I OFF I All [Q[] AI9

-



\~ PRO T

Change module's write-protect status

SYNTAX: WPROT

FUNCTION: WPROT is used to invert the hardware write-protect bit (bit
6) in a module's Attributes/Revision byte (module offset 7). By
inverting this bit, a write-protected module can be write-enabled or a
write-enabled module can be write-protected. Write-enabling a module
allows it to be "patched" in memory using DEBUG. Once the module has
been patched, WPROT is used to write-protect it again.

WPROT reads a file containing a module or group of modules from
standard input and writes the module(s), with the write-protect bit
inverted, to standard output. A message indicating the write-protect
status of each output module, and any error messages, are written to
the standard error path.

Note: WPROT does not verify or update the module's header parity or
CRC. The "VERIFY" utility must be used to update these values before
a module processed by WPROT can be loaded or used.

WARNING: Modules should only be write-enabled for debugging or
patching purposes. Once the module has been debugged or patched, it
should be write-protected to preserve system·security. Disabling
write-protection bypasses the protection provided by the memory
management hardware on the GMX 6809 CPU III.

For more information see the "05-9 GMX III MANUAL ADDENDA" and page
4-5 of the 05-9 "SYSTEM PROGRAMMERS MANUAL" (revision H).

In the following examples, "file name" is any
ending with the name of a rile containing
processed. "new file name" is a pathlist ending
output file that-will-be created.

EXAMPLES:

059: WPROT <file name >new file name

Output module is write-enabled.

059:

059: WPROT <file name ! VERIFY U >new file name

Output module is write-protected.

Output module is write-protected.

Output module is write-enabled.

059:

valid
the

in a

05-9 pathlist
module(s) to be

name for the

01984 GIMIX, Inc. b-1 Rev A 5/7/84



In the first example, "file name" contains a single module that is
wr i t e - pro t e c ted. A new f i Ie c aTI e d "n e w f i len am e " is c rea ted, whi c h
contains a copy of the module with -its status changed to
write-enabled. Note: The header parity and CRC of the output module
are incorrect and must be updated using "VERIFY" before the module can
be used.

In the second example, the input file contains three different
modules. The first two are write-enabled, while the third is
write-protected. Since WPROT simply inverts the existing
write-protect bit, the first two are changed from enabled to protected
and the third from protected to enabled. In this example, the output
of WPROT is "piped" directly to VERIFY (with the "U" option enabled)
in order to update the module's header parity and CRC. This
eliminates the separate verification step required in the first
example and produces an output file that is ready to use.

;

The program WPROT is copyright 1984
reserved. Any questions concerning
GIMIX.

by GIMIX, Inc. All rights
its use should be directed to

01984 GIMIX, Inc. b-2 Rev A 5/7/84



INIZ

Attach device(s)

SYNTAX: INIZ <devicename> [<devicename> <devicename> ••• ]

FUNCTION: INIZ is used to clear pending interrupts from serial I/O
devices that use the 6850 ACIA (such as GIMIX 1, 2, or 8-port serial
boards). If the system is RESET while an interrupt from one of these
devices is pending, the interrupt is not cleared by the reset. If the
system is rebooted, the operating system cannot identify the source of
the interrupt. Unidentified interrupts can prevent the system from
booting or cause a reduction in system performance (see the INTERRUPTS
section of the OS-9 GIMIX III MANUAL ADDENDA).

INIZ clears the interrupt by "attaching" (I$Attach) each device
list of devices given on the command line. If no list is given,
attempts to read a list of devices from the standard input path.

in a
INIZ

;

INIZ should be included in the "startup" file of any system that
includes 6850 type serial devices. The device list should include all
such devices, for which device descriptors are present in the boot
file (OS9Boot); with the exception of "TERM" and any non-sharable
devices (usually printers). It is not necessary to initialize "TERM",
and the command "INIZP" is used to initialize non-sharable devices
(see the description of the INIZP command).

INIZ can also be used to permanently "attach" any sharable I/O
device(s) (parallel ports, intelligent ports, etc.) to the system.
Using INIZ in this way prevents an unnecessary "termination" and
re-initialization of the device that would normally occur, for
exampl~, each time a user logs off of the system.

EXAMPLE:

059: INIZ T1 T2 T3

If INIZ is unable to open one of the devices listed, an error is
returned, and the remainder of the device list is not processed.

01984 GIMIX, Inc. c-1 Rev A 5/7/84



INIZP

Initialize device(s)

SYNTAX: INIZP </devicename> [</devicename> </devicename> ... ]

--

INIZP, like INIZ, is used to clear pending interrupts from I/O ports
that use a 6850 ACIA (such as GIMIX 1, 2, or 8-port serial boards).
However, INIZP does not permanently attach the device as INIZ does.
INIZP must be used if the device is non-sharable, since attaching a
non-sharable device would render it inaccessible.

Generally, device descriptors for printer ports are made non-sharable
to prevent more than one user from accessing the printer at the same
time. The printer device descriptors supplied by GIMIX (P, P1, IP1,
etc.) are non-sharable.

INIZP should be included in the "startup" file of any system that has
non-sharable device descriptors for 6850 ACIA type I/O ports included
in its "OS9boot". (For sharable devices, and ports that do not use
the 6850 ACIA, see the INIZ command.)

INIZP clears the interrupts by opening a path to each device in the
list of devices given on the command line, and then immediately
closing the path. If no devices are listed, INIZP attempts to read a
device list from the standard input path.

EXAMPLE:

OS9: INIZP /P1 /P2 /P3

If INIZP is unable to open one of the devices listed,an error is
returned, and the remainder of the device list is not processed.

NOTE: The INIZP command requires the "I" character before each device
name as shown in the above example, while the INIZ command does not.

-

-
01984 GIMIX, Inc. c-2 Rev A 5/7/84



;

HOERR

Report Errors From OMTI Hard Oisk Controller

SYNTAX: HOERR

FUNCTION: HOERR is used to return information from an OMTI type hard
disk controller's built-in error log. NOTE: This facility is only
available in systems using the OMTI controller. XEBEC controllers 00
NOT support this function, and HOERR should NOT be used in systems
with XEBEC controllers. Systems with the OMTI controller can be
identified by the "OMTI" device driver in the boot file or module
directory. XEBEC controllers use a different driver: "XBC".

HOERR first attempts to open a path to the controller through the
device "/HO". Once a path is opened, HOERR issues the OMTI
controller's "request logout" command twice, once for each of the two
possible drives that the controller can support. It then prints (in
decimal) the information returned by the controller.

The OMTI controller returns two counts for each of the two drives or
Logical Unit Numbers (LUN a = /HO, LUN 1 = /H1). The first count is
the number of retries that have been performed and the second is the
number of "hard" errors that have occurred. Note: The error log is
cleared when the system or controller is reset, or when the error log
is read by HOERR.

The information supplied by the error log can be useful in determining
the condition of the hard disk(s). OS-9 does not perform any retries
when accessing the hard disks, the controller is programmed to perform
its own retries if an error occurs. When an error occurs, the
controller uses re-reads, restore operations, and error correction if
neces~ary, to try and correct it. After 8 unsuccessful "retries", the
error is considered permanent, the hard error count is incremented,
and the appropriate error is returned to the driver.

HOERR should be used before problems become apparent through errors
reported by OS-9. To be most useful, "HOERR should be used on a
regular basis, and a record kept of the reported errors. A certain
number of retries is normal, and is usually caused by soft errors that
are re-read correctly; however, a drastic rise in the number of
retries and errors, over a comparable period of time and system use,
may indicate potential problems with the drive(s) or controller.

For more information, see the OMTI controller manual.

EXAMPLES:

OS9: HOERR

Retries for LUN 0: a

Retries for LUN 1: 5

059:

01984 GIMIX, Inc.

Permanent Errors: 0

Permanent Errors: 0

d-1 Rev A 10/12/84



-

-

-


